The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus
نویسندگان
چکیده
BACKGROUND Glycation of high-density lipoprotein (HDL) decreases its ability to induce cyclooxygenase-2 (COX-2) expression and prostacyclin I-2 (PGI-2) release in endothelial cells. Whether lipid content of HDL, especially sphingosine-1-phosphate (S1P), plays any specific role in restoring the protective function of HDL in type 2 diabetes mellitus (T2DM) is still unknown. METHODS AND RESULTS Immunochemical techniques demonstrated that glycated HDL loses its protective function of regulating COX-2 expression compared with diabetic HDL. We proved that the lipid content, especially phospholipid content differed between diabetic HDL and glycated HDL. Levels of HDL-c-bound S1P were increased in T2DM compared with control subjects as detected by UPLC-MS/MS (HDL-c-bound S1P in control subjects vs. T2DM: 309.1 ± 13.71 pmol/mg vs. 382.1 ± 24.45 pmol/mg, P < 0.05). Additionally, mRNA levels of S1P lyase enzymes and S1P phosphatase 1/2 were decreased in peripheral blood by real-time PCR. Antagonist of S1P receptor 1 and 3 (S1PR1/3) diminished the functional difference between apoHDL&PL (HDL containing the protein components and phospholipids) and diabetic apoHDL&PL (diabetic HDL containing the protein components and phospholipids). With different doses of S1P reconstituted on glycated HDL, its function in inducing the COX-2 expression was restored to the same level as diabetic HDL. The mechanism of S1P reconstituted HDL (rHDL) in the process of regulating COX-2 expression involved the phosphorylation of ERK/MAPK-CREB signal pathway. CONCLUSION/SIGNIFICANCE S1P harbored on HDL is the main factor which restores its protective function in endothelial cells in T2DM. S1P and its receptors are potential therapeutic targets in ameliorating the vascular dysfunction in T2DM.
منابع مشابه
High-density lipoprotein of patients with Type 2 Diabetes Mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate
BACKGROUND Dysfunctional high-density lipoprotein (HDL) may have pro-inflammatory effects on the endothelial cells,which causes atherosclerosis in type 2 diabetes mellitus (T2DM). HDL is a major carrier of sphingosine-1-phosphate (S1P) in plasma while S1P exhibits multiple biological activities. However, potential role of HDL and S1P in T2DM remains unexplored. We hypothesized that diabetic HDL...
متن کاملDiabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection.
OBJECTIVE The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. APPROACH AND RESULT...
متن کاملGlucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein
Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...
متن کاملType 2 diabetes is associated with loss of HDL endothelium protective functions
AIMS/HYPOTHESIS One of the hallmarks of diabetes is impaired endothelial function. Previous studies showed that HDL can exert protective effects on endothelium stimulating NO production and protecting from inflammation and suggested that HDL in obese people with diabetes and dyslipidemia may have lower endothelial protective function. We aimed to investigate whether type 2 diabetes impairs HDL ...
متن کاملIn Vitro Effect of ?-Tocopherol, Ascorbic Acid and Lycopene on Low Density Lipoprotein Glycation
Nonenzymatic glycation of low density lipoprotein (LDL) is a reaction of glucose and other reducing sugars with apolipoprotein B100 (apo-B100) lysine residues. In diabetes, this reaction is greatly accelerated and is important in the pathogenesis of diabetic complications. The objective of this study was to investigate in vitro effects of ?-tocopherol, ascorbic acid and lycopene on LDL glycatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014